
The Incomplete Csound Manual 

Risto Holopainen, October 2023

Licenced under Creative Commons CC BY-NC-ND 4.0

Preface
This manual is written for the impatient sound adventurer who wants to get to know just sufficiently 
of the Csound language to get started rapidly. The manual is intentionally incomplete, and will 
remain so. Why? Because Csound has expanded so much in a few decades that no sane person 
would learn all of it. I have collected what I consider a bare minimum of useful things to know, 
which is only a fraction of what can be done but still an immensely powerful set of tools. This 
manual tries to be concise. I will not discuss sound design or the fundamentals of signal processing. 
If you have any experience with programming or modular synthesizers, you will notice that Csound 
is located somewhere in the intersection of those two worlds.

The examples have been tested on Csound version 6.16. 

Introduction

Csound is a domain specific language for audio. Its heritage goes back to the MUSIC N family of 
languages developed since the 1960's but it is constantly expanding with the inclusion of more 
functions and syntactical constructions.

Today Csound has about 1200 different opcodes. These opcodes are similar to the keywords of a 
programming language, they are the basic vocabulary you need for programming. Or perhaps it 
would be better to compare opcodes with all the functions available in the standard libraries of a 
programming language, or the various modules available for a modular synthesizer.

Useful as these opcodes are, it is easy to get lost in the intricacies of all possibilities on offer. There-
fore, this guide attempts to present a bare minimum of the Csound language, just enough for a wide 
range of tasks, if not for everything one might conceivably want to do. My selection of a reduced 
set of Csound's opcodes reflects my personal interests, other users would surely choose different 
ones. The point is to find a sufficiently small set of opcodes which can be committed to memory, 
because nothing hampers productivity like permanently having to consult the manual. This guide 
introduces a subset of Csound that should be sufficient to get started.

I will focus on two use cases: sound synthesis and processing of an input soundfile. I will assume 
you have Csound installed. Otherwise, download1 and install it first so you can try out the examples. 
You will need to use a simple text editor to write plain text files containing instructions for Csound. 

1 https://csound.com/download.html

https://csound.com/download.html


The interaction with Csound happens on the command line, although there are probably a few 
graphical front ends if you insist.

Basic structure
Csound is a text based audio programming language. It is functionally separated into two parts: 
sound synthesis by instruments where sound producing and processing algorithms are defined, and 
a score which specifies events in time. The first part, called the orchestra file, consists of one or 
more instrument definitions. Each instrument may or may not receive input signals and should have 
an audio output signal. The other part is called a score file. It contains a list of note events with an 
instrument number, a starting time, a duration, and possibly any number of parameters or so-called 
p-fields that are interpreted by the instrument.

The orchestra file

The orchestra file is a text file with the .orc suffix. It has a header, followed by instrument 
definitions. The header is where you set the sample rate, the control rate, and the number of output 
channels. For example, it may look like this:

sr = 48000
kr = 12000 ; control rate
nchnls = 2 ; stereo out

Anything following a semicolon on a line is a comment. In signal processing literature, there is a 
ubiquitus expectation that signals be limited to the amplitude range [-1,1]. Various soundfile 
formats have different maximum amplitudes, but to ensure that we can define signals in the 
standard range of [-1,1] regardless of output format we always include the following statement next 
in the orchestra file:

0dbfs = 1.0

This means that the peak at 0 dB full scale is at the numerical value 1.0. Louder signals will clip.

An instrument definition begins with instr followed by a number, and ends with endin. Inbetween 
is the specification of what the instrument does. The syntax of instrument definitions is quite 
simple; basically it consists of lines with three columns where the first indicates a variable name, 
the second is an opcode, and the third is a set of parameters used by the opcode. Like this:

variable-name(s) opcode parameter-list

The parameter list is a comma separated list of values pertaining to the opcode, which must be 
specified in the right order, sometimes with optional parameters at the end of the list. Usually the 
variable to the left is a single variable name but, depending on the opcode, it may be a comma 
separated list. 

The opcodes may be thought of as similar to the modules of a modular synthesizer: there are 
oscillators, envelope generators, filters, and much more. The variable names on the left are signals 
of various types. Think of them as the patch cords of a modular synthesizer; they are connected to 
the output of the opcode and can be routed to various inputs further down the instrument definition. 



And the inputs in this case are the parameters of each opcode. Trying to use a variable that has not 
yet been declared as a parameter of an opcode produces an error.

A simple oscillator

Let's build an oscillator whose amplitude and frequency can be specified from the score. First we 
declare the variable iamp, which takes its value from p4, the fourth p-field in the score file, which 
we'll use to set the amplitude. Similarly, the variable ifrq is assigned a value from p5, the fifth p-
field of the score. The variable aos holds the audio signal that we will store in a soundfile.

sr = 48000
kr = 16000
nchnls = 1

0dbfs = 1.0

instr1 ; Oscillator routed to output
iamp = p4
ifrq = p5
aos oscili iamp, ifrq, 1

out aos
endin

Save the above code in a file named sineoscil.orc for later use. Here we have introduced two op-
codes: oscili and out. The oscillator takes three arguments and sends its output signal to the variable 
aos. The first argument to oscili is the amplitude, which we have defined as an i-rate variable iamp. 
All i-rate variables remain constant during a note event. The second oscili parameter specifies the 
frequency in Hz, and the third is the number of a wavetable, which must be defined in the score file. 
The out opcode has no variable name on the left. It routes the signal on its right hand side to the 
output, which is typically a soundfile. For stereo output the opcode is outs, which takes two input 
argument, one for each channel. Thus, for example,

outs ax, ay 

outputs ax to the left channel and ay to the right. The number of channels specified in the header, 
nchnls, must match the output opcode.

There are three types of signals or variables that we need to know about. These are audio rate, 
control rate, and init rate signals. The audio rate is the sample rate of the output soundfile. The 
control rate is slower and must divide the sample rate. Its purpose is simply to save computations, 
and it is used for parameters that may change slower than the audio samples, such as envelopes or 
vibrato. For those more used to analogue modular synthesizers, control rate signals are similar to cv 
(control voltage) signals. The i-rate corresponds to note events as defined in the score section. At 
the start of a note the instrument begins to generate sound, and it keeps on for the duration specified 
by that note event.

Variable names follow a simple rule: audio rate variables must have a name beginning with a, 
control rate signals must begin with a k, and init rate variables begin with i (or p followed by a 
number referring to p-fields in the score file). There are also global variables beginning with g 
which will be discussed later, and many other types that we will not discuss. Unfortunately, there 
exist some opcodes with names beginning with a, i or k, and these names are reserved.



Actually, the naming convention is a clever idea. To declare a variable, its type is automatically 
inferred from its name, and there is no way of mistaking the type of a variable further down the 
instrument definition. But trying to name a variable to some reserved keyword will result in 
possibly cryptic error messages. 

The score file

By convention, the suffix .sco is reserved for score files. At a minimum, a score file should have a 
note event of the form

i# p2 p3 [p4 p5 ...]

where # is the number of an instrument in the corresponding orchestra file, p2 is the time when the 
note begins, and p3 is its duration in seconds. In the oscillator example above, p-field 4 is used for 
amplitude, and p5 for frequency. The third oscillator parameter refers to a wavetable number 1. This 
wavetable must be defined in the score file. There are an enormous amount of options, of course, 
but we will stick with one single format:

f1 0 4096 10 1

This should be the first line in the score file. Here f indicates that this is a wavetable, the number 
immediately after f is the number of the wavetable, which the oscillator refers to; the following zero 
is the time from which the wavetable is made accessible (we want to use it from the beginning); 
4096 is the wavetable's size (a power of two should be used), the number 10 specifies one of the 
fifty or so different versions of the wavetable generating function, in this case one that creates an 
harmonic tone by summing sinewaves. The last number, 1, specifies the amplitued of the first 
partial. If more numbers are added to the list, their position after ”10” indicates partial number, and 
the value is the partial's amplitude. Compound waveforms can be made by summing more 
harmonics, for instance

f2 0 4096 10 1 0 0.5 0 0.25 0 0.125

would result in a waveform with the first seven odd partials with amplitudes 1, 0.5, 0.25, and 0.125, 
respectively, which we have stored in wavetable number 2. By default, the amplitude is normalised 
to 1. Refering to this wavetable from an oscillator might look something like: 

asig oscili iamp, ifrequency, 2

There are often several different ways of acheiving the same result in Csound. The compound 
spectrum stored in f2 might also be mixed together by playing four instances of one oscillator 
producing a pure sinewave together, although that would be less efficient. For inharmonic tones, 
however, there is not option but to use several differently tuned sine oscillators.

Now, let's test the oscillator instrument with a score file. Save the following lines in a file called 
sineoscil.sco.

f1 0 4096 10 1
i1 0 2 0.5 440 ; instr 1, start, dur, amp, freq
i1 2 1 0.9 311 ; at time 2, play one second at 311 Hz
e



Note that score files end with the letter e. The notes in the score file don't have to follow in 
consecutive temporal order, Csound will take care of sorting them. Any number of notes can play 
simultaneously to create a mix, but care has to be taken to avoid excessive amplitudes and clipping.

The csound command

In order to produce an output soundfile, an instrument definition needs to be put in an orchestra file 
and there needs to be a score file with note events that activate the instrument. Then a command 
line argument is given in roughly the following form:

csound -[options] outfile orchestrafile.orc scorefile.sco

If you put the file names in the wrong order you will get an error message. Suppose we have saved 
the orchestra file as sineoscil.orc and the score as sineoscil.sco, then the command

csound -Wgo sinetest.wav sineoscil.orc sineoscil.sco

should generate an output file named sinetest.wav with a single sinusoid at 440 Hz, at amplitude 0.5 
for two seconds, then a sinusoid at 311 Hz at amplitude 0.9 for one more second. The options in  
this command are W for output to the .wav format, g to suppress graphics output, and o for the 
output file.

Sometimes it would be practical to put the orchestra and score in the same file. This is known as the 
unified file format. There is a special syntax to specify what part of the single file makes up the 
orchestra and score parts. The main advantage of the split format, apart from having fewer 
syntactical structures to remember, is that score files may be generated algorithmically by other 
programs without having to think about outputting the orchestra file as well. In this guide we will 
only use the split format.

All available opcodes can be listed by typing: 

csound -z 

A help message comes up with the flag -h.

Practical advice

Csound is extremely flexible in how things can be done. Efficiency considerations are the reason 
why there is such a thing as a control rate. Otherwise everything could run at the sample rate, and if 
you really care about sound quality that might be preferable. Likewise, efficiency is the motivation 
for using wavetables instead of, say, calling a sine function. But the sine function is available and 
can be called when necessary.

The interface between the instrument and the score p-fields is also very flexible. There can be any 
number of p-fields (there probably is an upper limit, but it is unlikely that you would ever approach 
it), and the p-fields may represent almost whatever one can think of. To avoid confusion, it is good 
practice to follow these two simple principles whenever possible:

Try to be consistent in the use of p-fields.

Keep the number of p-fields small, make design decisions in the instrument.



As for consistency, say you have several instruments with amplitude and frequency given by p-
fields in the score. It would be very confusing to use p4 for amplitude and p5 for frequency in some 
instruments, and to do the opposite in some other instruments. Sticking with a habit regarding the 
first few p-fields will lessen the potential confusion as you work with many different instruments.

Also, just because you can have twenty p-fields and specify all sorts of obscure parameters of a 
sound doesn't mean that you should. There is a significant cognitive load of having to recall what all 
those parameters do. Besides, there will be a lot of typing to do, because you have to fill in all those 
p-fields for each note.

Case studies
Type in these examples and run them yourself. Try to understand what is going on, and experiment 
with modifications.

Additive synthesis

Should we use a wavetable with a complex waveform for additive synthesis? This is efficient, but 
restricted to harmonic spectra. Another option is to use an oscillator that produces a single sinusoid 
and sum a few of them by writing several notes in the score file. With the latter alternative, the 
spectrum may be inharmonic and the partials may each have their own amplitude envelope. Or we 
could use several oscillators in the same instrument, each tuned to a different frequency.

In this new version of a sine oscillator, we introduce one new opcode: linen. This is a simple enve-
lope generator with four parameters: peak amplitude, rise or attack time, total duration (which is 
always p-field 3), and final decay. The time unit defaults to seconds. By multiplying the oscillator's 
output aos with the control rate envelope kenv in the last line we avoid clicks at the beginning and 
end of notes. 

instr 2 ; single sine oscillator

iamp = p4
ifrq = p5
iatk = 0.05 ; atack time of envelope
idec = 0.15 ; decay time
aos oscili 1, ifrq, 1 ; f1 should hold a sinewave
kenv linen iamp, iatk, p3, idec

out kenv * aos
endin

In the score file, we will specify three inharmonic notes to sound simultaneously for five seconds. 
Their amplitude is set to 0.3 to ensure the sum will not clip.

f1 0 4096 10 1 ; sinewave

i2 0 5 0.3 396.0
i2 0 5 0.3 560.0
i2 0 5 0.3 762.1
e



At this point it might be interesting to experiment with different spectral mixtures. Or try changing 
the wavetable to the previously defined f2. As mentioned, the same spectrum with three partials 
could be created by one note and an instrument using three oscillators.

instr 3

iamp = p4/3
ifrq1 = p5
ifrq2 = 1.4141*ifrq1
ifrq3 = 1.9245*ifrq1

a1 oscili 1, ifrq1, 1
a2 oscili 1, ifrq2, 1
a3 oscili 1, ifrq3, 1

amix = a1 + a2 + a3
kenv linen iamp, 0.05, p3, 0.15

out kenv * amix

endin

; score file:
f1 0 4096 10 1
i1 0 5 0.9 396
e

With instrument 3 we have a transposable mix of three oscillators, so complex tones with the same 
intervals between their three partials may be transposed to any frequency. Or we may superimpose 
several of these notes in the score, and even change the wavetable to something containing a few 
higher partials.

Notice the line beginning with amix. The equals sign assigns the expression on the right hand side 
to the variable amix. All standard arithmetic operations can be used, although division by zero 
should be avoided. Variables of different rate can be mixed freely, but the result will be converted to 
the fastest rate. This is what happens in the multiplication kenv*amix, where the output is a-rate.

Waveshaping and ring modulation

One of the classic synthesis techniques uses nonlinear transfer functions to produce harmonic 
partials assuming the input is a sinusoid. Waveshaping is simply the application of a polynomial, 
often with the sinusoid as its argument:

y (t )=f (x (t ))
x (t )=sin (ω t )

where the polynomial is

f (x )=a 0+a1 x+a 2x
2+a 3x

3+...
The polynomial's order is the highest term with nonzero exponent. When the input is a single 
sinusoid at frequency F Hz, the highest partial produced by a transfer function of order n is nF. 
Even powers will cause a DC offset, which can be removed by subtracting a constant or by highpass 
filtering.



instr 4; waveshaper

ax oscili 1, p5, 1 ; put a sine in table 1
aw = ax^2 ; same as ax*ax
aw atone aw, 100 ; highpass filter, cutoff 100 Hz
ke linen p4, 0.1, p3, 0.2 ; envelope

out ke*aw

endin

; score file
f1 0 4096 10 1
i4 0 2 0.7 220
e

The opcode atone is a one-pole highpass filter which can be used to remove the DC offset caused 
by squaring the sine signal. Notice that it is one of the few opcodes beginning with an a. Never try 
to name a variable atone!

When creating higher order polynomials, it is a good idea to introduce new variables and factor 
higher powers into lower ones. In the next instrument we also introduce three related modulation 
signals, k1, k2, and k3, which are used to animate the sound by taking turns emphasising different 
spectral components.

instr 5

ax oscili 1, p5, 1
ax2 = ax^2
ax3 = ax*ax2
ax5 = ax*ax2*ax2

imod = 1/3
k1 oscili 1, imod, 1
k2 = .5*(1 + k1) ; unipolar modulation signal
k3 = 1 – k2 ; and its inversion
aw = k1*ax + k2*ax2 + k3*ax3 + k1*k1*ax5 ; mixture

ke linen p4, 0.05, p3, 0.2
out .25 * ke * aw ; divide by 4 because we mixed four signals

endin

Instrument 5 creates a mixture by waveshaping with a fifth order polynomial. We have to take care 
with the amplitudes of all the signals, and to err on the cautious side the mixture is multiplied with 
0.25 (because we mixed four signals) before sending it to the output. Often one needs to do some 
simple calculations or use a graph plotting program to visualise functions. No opcode is needed to 
transform the bipolar sinusoid k1 to the unipolar sinusoid k2, we simply use arithmetic.

Apart from polynomials, some other functions work well for waveshaping, such as sin, cos, and 
tanh. In particular, these three functions all have the range [-1,1], which makes it easy to reason 
about the output amplitude. On the other hand, these functions have an infinite Taylor expansion, 
which means that they do not produce bandlimited output. Used with input signals of moderate 
amplitude that should not pose a great problem. A few things to try:

ax oscili k1, p5, 1 ; make the amplitude time-variable
aw1 = cos(ax)
aw2 = sin(ax)
aw3 = tanh(ax)



Notice that this example deviates from the usual syntax where the opcode goes in the second 
column. Standard mathematical functions are available as inline operators.

Ring modulation is simply the multiplication of two audio rate signals. If the signals are pure 

sinusoids at f 1  and f 2  Hz, their ring modulated product has components at f 1± f 2  Hz. Wave-

shaping and ring modulation can be combined in many ways.

instr 6
; waveshaper—ring modulator
; inharmonic : two oscillators --> waveshaper * rm

iamp = p4
ax oscili iamp, p5, 1
ay oscili iamp, p6, 1
az oscili 1, p7, 1

aw = .125*(ax+ay)^3; mix ax+ay, then waveshape
arm = az*aw ; multiplication is ring modulation
kxp expon 1, p3, 0.001 ; exponential envelope

 
 out kxp * arm
endin

; score file
f1 0 4096 10 1

i6 0 1 0.85 400 325 110
i6 1 2 0.64 220 500 311
i6 3 1.2 0.75 244 344 433
i6 4 1.5 0.90 177 646 535
e

Instrument 6 uses three oscillators with frequencies specified in p5, p6, and p7 in the score file. The 
first two oscillators are mixed together, then we take the third power of the sum. Waveshaping of a 
compound tone, such as two sinusoids, produces not only higher harmonic partials of each of the 
sinusoids, but also some intermodulation products such as sums and differences of the frequencies. 
Finally, ring modulation of this waveshaped tone with a third frequency produces an even denser 
spectrum. Rich inharmonic timbres can be made if the three frequencies are mutually inharmonic.

The expon opcode generates an exponential envelope suitable for percussive sounds. Its first para-
meter is the amplitude at the outset, the second parameter is a duration, and the third parameter is 
the final amplitude after this duration has elapsed. The third parameter should be small but positive. 
Here we have used p3 as the duration parameter, so the envelope declines to the value 0.001 during 
one complete note, regardless of the note's length. When note lengths differ in the score, this means 
that the envelope will shrink or stretch accordingly. One might want to use a fixed duration as the 
second parameter, and perhaps also avoid clicks in the beginning and end by multiplying with a 
linen envelope.



Frequency modulation

instr 7 ; basic 2op FM 

 imod = p7
 amod oscili 1, p5, 1
 acar oscili 1, p6*(1+imod*amod), 1
 ke linen p4, 0.05, p3, 0.15

 out ke*acar
endin

; score
f1 0 4096 10 1

i7 1 1 0.75 330 330 1.5
i7 2 1 0.81 444 515 0.7
i7 3 1 0.64 275 523 1.0
e

In the simplest form, frequency modulation (FM) uses two oscillators, a modulator and a carrier. 
The modulator in this example comes from an oscillator with a fixed frequency, given by p5, and it 
modulates the carrier frequency p6 by an amount given by the modulation index, imod, which 
comes from p7. The expression p6*(1+imod*amo) specifies an instantaneous frequency which 
varies around the carrier p6 by the relative amount imod.

Next we introduce a morphing FM instrument using two modulators and one carrier. In the 
beginning of the note, the modulation is taken from the first oscillator (ax), and at the end it is taken 
from the second oscillator (ay). During the note, the first oscillator linearly fades out while the 
second fades in.

instr 8
; morphing dual modulator fm

 ax oscili 1, p5, 1
 ay oscili 1, p6, 1
 kl line 1, p3, 0
 am = kl*ax + (1-kl)*ay
 ind = 1.5 ; modulation index
 az oscili 1, p7 * (1 + ind*am), 1
 ke linen p4, 0.05, p3, 0.08

out ke*az
endin

The new opcode line is similar to expon, it takes three parameters which are the starting value, the 
duration, and the finishing value. The control rate signal kl ramps from 1 to 0 during each note. A 
cross-fade is made by the expression 

kl*ax + (1-kl)*ay.

Smoother transitions between two different modulation frequencies can be achieved this way than 
using a single modulator with sliding frequency.



Score file syntax

If any instrument initiated from the score file refers to a function table, it needs to be available at the 
time when it is used. Therefore, a statement such as

f1 0 4096 10 1

should always go on the first line of the score file. If no function table is needed, this line can be 
omitted. Then follows instrument statements, which are the letter i followed by the instrument 
number, followed by at least two more p-fields. The first two have a fixed meaning: p2 is the start 
time of a note, p3 is its duration. More p-fields can be used, and must correspond to the same 
number of references to p-fields in the instrument. The score ends with the letter e.

The overall tempo of a score may be changed by putting a line such as

t 0 72

before any note events. This means that at time 0, the tempo will be set to 72 beats per minute. 
Tempo changes such as ritardandi can be achieved by adding another beat location and a new 
tempo, for instance

t 0 54 11 80

will create an accelerando from 54 BPM at the beginning, to 80 BPM 11 beats into the score.

New sections can be introduced with the letter s. When a new section is introduced the time (p2) 
begins from 0 again, but note events are written to the sound file after the end of the previous 
section.

Several lines may be commented out by putting them between /* and */, as in a c-style comment. 
This works also in the orchestra file.

A special bracket notation may be used for specifying rational numbers or simple arithmetic ex-
pressions. Instead of writing a decimal number, let's say 1.33333, you may write it as the fraction 
[1+1/3]. This is particularly handy for pure intonation and tuplet rhythms. 

To repeat a value in a certain p-field from the note above, a single period (.) may be inserted in that 
p-field. For this to work, all notes must refer to the same instrument.

f1 0 4096 10 1
t 0 48 ; tempo 48 BPM

i1 0 3 0.7 [3/5] ; pure intonation melody
i1 3 2 0.2 [8/9]
i1 5 2 0.8 [1/1]
s ; begin new section
i1 0 1 0.6 [5/4]
i1 1 2 . [9/8] ; dot in p4 means repeat last value
i1 3 1 . [4/3]
e

When using ratio notation for frequencies, the instrument should define a reference frequency, such 
as [1/1] = 440 Hz. Then the frequency  ifrq = 440*p5 can be used by the oscillators.



Subtractive synthesis

There are lots of different filters in Csound. We have already encountered the one-pole highpass 
atone. There is a corresponding one-pole lowpass tone filter. Both take the input signal as the first 
argument and cutoff frequency as second argument.

Four Butterworth filters are available: butlp for lowpass, buthp for highpass, butbp for bandpass, 
and butbr for band-reject.

ay butlp ax, kfreq ; cutoff frequency may also be i-rate or a-rate
ay buthp ax, kfreq
ay butbp ax, kfreq, kband ; centre frequency and bandwidth in Hz
ay butbr ax, kfreq, kband ; band-reject

For a simple demonstration we could use white noise as input. The rand opcode takes one 
argument, specifying the maximum amplitude of the noise.

instr 9 
ano rand 1.0 ; random noise, amplitude 1
abr butbr ano, 1400, 500
abp butbp abr, 600, 300

out abp
endin

Sound input

Csound can be used as a sampler by reading soundfiles and playing them at different speeds and 
starting the playback from an arbitrary position. It can also be used as a customisable effects 
processor.

Input from a soundfile is possible by several opcodes. The diskin opcode can read most common 
soundfile formats with up to 40 channels. The first and mandatory parameter is the file name, 
usually given as a text string. There are several optional parameters, the first of which is the 
playback speed where 1 is the original speed, and the second parameter is a skip time in seconds, 
setting the point in the input soundfile from which to begin reading. The speed parameter may be k-
rate, so it's possible to dynamically warp the playback speed.

When reading a mono soundfile, diskin sends the read samples to a single a-rate variable, but if 
there are more than one input channel, there must be a comma separated list of input variables 
matching the number of channels.

ax diskin ”toot.wav”, kspeed, iskip ; mono input
al, ar diskin ”teet.wav” ; stereo input

Here it is assumed that the soundfiles toot.wav and teet.wav exist in the same folder as the orchestra 
file. Instead of just reading one fixed soundfile, diskin may be given a p-field containing a text 
string with the file name. Then the score may specify different soundfiles to read for each note. It 
might look something like this:



; inside an instrument:
ax diskin p4
; in the score file:
i1 0 3 ”toot.wav”

Looping soundfiles is possible by setting the fourth parameter of diskin to 1. The soundfile then 
plays to the end, and then starts over from the beginning. If kspeed is negative, the playback will be 
backwards. Note that you cannot play a soundfile backwards starting from the beginning unless it is 
set to looping, but you could set iskip to the end of the file and play it backwards.

kspeed = -1/2 ; backwards at half speed
ax diskin ”toot.wav”, kspeed, iskip, 1 ; last 1: looping

Delay and feedback

One of the most important components in audio effects is delay lines. A wide range of effects can be 
built using delays and various other filters. The delay opcode takes a mono audiorate variable as its 
first parameter and a fixed delay length in seconds as its second parameter.

instr 10
asig diskin ”toot.wav”
ad delay asig, 0.5 ; delay asig by half a second

out .5 * (asig + ad) 
endin

In this example the delay is added to the original signal. This is the same as a FIR (finite impulse 
response) comb filter. If the delay time is set much shorter, less than 1/20 of a second, the repetition 
will colour the sound at the frequency which is the inverse of the delay length. For more pronoun-
ced effects we will add feedback. 

In Csound, variables have to be declared before being used, but feedback is circular or self-
referential. The way to solve it is to introduce a feedback variable using the opcode init. It takes one 
parameter, the initial value of the variable at the start of a note. Then we can do feedback like this:

ay init 0
ay = ax + ay

However, there is no such thing as instantaneous feedback in a digital system, so the last line could 

be written in mathematical notation as yn=xn+yn−1 . Now we may combine feedback with delay:

instr 11
ain diskin ”toot.wav”
adl init 0 ; feedback variable
adl delay ain + 0.5*adl, 1/3 ; add previous value of adl to itself

out ain + adl
endin

This instrument delays the input by a third of a second, adds the delay to itself with a gain factor of 
1/2, meaning that each repetition is half as loud as the previous one, and the mix of the dry signal 
and the delay are sent to the output.



The character of a delay effect can be further shaped by inserting a filter in the feedback loop. Try 
experimenting with tone, atone, butlp, buphp, butbp, or butbr.

There is also a vdelay that permits variable delay time. Modulation of delay time is the basis of 
chorus and flanger effects, and it can be used to impose a vibrato on a sound. For no particular 
reason, the opcode vdelay differs from the fixed length version by using milliseconds as time unit 
instead of seconds. All delays need to allocate a certain amount of memory, one memory location 
for each sample of delay. In the fixed delay version the memory allocation is handled automatically, 
but in the variable delay the maximum delay length one intends to use must be provided as the third 
parameter:

adl vdelay ax, ktime, imax ; ktime may vary between 0 and imax [ms]

A vibrato can be created by modulating the delay time around an average value.

instr 12 ; vibrato
ain diskin ”toot.wav”
kdel oscili 1, p4 ; sinusoidal modulation at rate p4
imax = 200 ; longest delay 200 ms
kdel = 1 + 0.8*kdel
adl vdelay ain, 100*kdel, imax ; kdel varies between 20 and 180 ms

out adl
endin

A time-warping sampler

Using diskin we can dynamically change the playback speed of a soundfile. Now we will try 
something interesting: the amplitude envelope of the soundfile will determine the playback speed. 
Although there is an opcode for virtually anything, including extracting the RMS amplitude, it is 
easy to build an envelope follower from simpler components. We will square the input signal and 
average it using a lowpass filter with very low cutoff. Lastly, we take the square root and use that as 
the amplitude envelope kamp. 

In keeping with Csound's usual quirkiness k-rate variables have their own set of filters. The port 
opcode is designed to create a portamento, which works well for the task of envelope following. 
The first argument to port is the input signal, and the second argument is not a cutoff frequency, but 
a ”half-time” or the time it takes the signal to reach half-ways to its goal. In the world of modular 
synthesizers, this would be called a slew rate limiter.

Suppose we want the playback speed kspeed to vary inversely with amplitude; that is, when the 
input signal is loud it plays slowly, and when it is soft it runs faster. We might try something like

kspeed = 1.2 - kamp

which gives a fastest speed of 1.2 when the input is silent, and a theoretical slowest speed of 0.2 if 
kamp approaches 1. But we don't know how the input signal's amplitude varies over time, and how 
much it will affect the playback speed. It may be necessary to progress by trial and error. There is a 
convenient opcode, printk, for printing out variables at regular time intervals. By printing out the 
values of the amplitude envelope we can better adjust the values.



instr 13 
kspeed init 1
ain diskin "toot.wav", kspeed
kamp = k(ain)^2 ; convert ain to k-rate and square it
kamp port kamp, 0.125 ; slew rate limit kamp
kamp = sqrt(kamp)
kspeed = 1.2 - 2.0*kamp; set parameters by trial and error

 printk 0.3, kamp ; print out kamp every 0.3 sec
out ain 

endin

; score
i13 0 8
e

Control structures 

Looping is a fundamental programming construct. Csound instruments already implicitly loop from 
the first to the last line of the instrument definition as each sample is calculated. Explicit loops can 
be introduced using labels and goto statements. There are also conditional statements and com-
parisons. These control structures work only with i-rate and k-rate variables. Using them with a-rate 
variables requires an embarrassing workaround: the k-rate has to be set equal to the a-rate in the 
orchestra header, then a-rate variables have to be converted to k-rate before being used in logical 
expressions, and then converted back again.

; .orc
sr = 48000
kr = 48000
nchnls = 1

0dbfs = 1.0

instr 14
ax oscili 0.7, 244
kp = k(ax) ; convert ax to k-rate
kp = (kp > 0 ? kp : 0) ; if kp > 0, keep value, otherwise make it 0
ap = a(kp) ; convert kp to a-rate

out ap
endin

; .sco
i14 0 2
e

This instrument does half-wave rectification of a sine at 244 Hz, just for the purpose of illustration. 
As always, there are other ways to do half-wave rectification. 

The opcode cmp allows a-rate arguments and a text string indicating which comparison operator to 
use. In the next example, 

cmp ax, ”<”, ay

outputs 1 at each sample such that ax < ay, and a 0 otherwise. However, this doesn't help us with 
branching at audio rate, we still have to convert a-rate to k-rate. Here we use if, goto, and labels to 
transfer control. 



instr 15

ax oscili 1, 400
ay oscili 1, 507
az = ax
ac cmp ax, "<", ay ; ac=1 if ax<ay, ac=0 otherwise
kg = k(ac) ; convert ac to k-rate

 
if kg > 0 goto summation ; because if doesn't do a-rate
goto output

 
summation:

az = .5*(ax + ay)

output: 
 out az

endin

This instrument compares two sinusoids, ax and ay, and if ax < ay their scaled sum is output, 
otherwise only ax is output.

Global variables

Sometimes it is useful to share a variable between instruments. For example, one instrument makes 
a dry percussive sound, and we wish to add reverberation. If we put the reverb inside the percussive 
instrument it will turn off at the end of each note. The reverb must be its own instrument which is 
turned on for as long as the percussion instrument is playing, and a few more seconds at the end to 
allow the reverb to ring out. To communicate between the instruments we need global variables. 

A global variable can be i-rate, k-rate, or a-rate just like local variables, and its name must begin 
with gi, gk, or ga. If there is any feedback the global variable should be initiated before and outside 
the instruments that use it.

sr = 48000
kr = 48000
nchnls = 1

0dbfs = 1.0
gadel init 0 ; global a-rate signal for delay with feedback

instr 16; perk

ke expon p4, 0.25, 0.01
ax oscili ke, p5
gadel = gadel + ax ; add input ax to delay gadel

out ax ; dry signal
endin

instr 99
gadel delay 0.75*gadel, 0.145 ; make each iteration decay by 0.75

out gadel ; we want to hear it
endin



; score
i99 0 8 ; turn on and let it stay on while i3 plays 

i3 0 1 0.85 165
i3 1 1 0.75 175
i3 3 1 0.78 243
e

Another use of a global variable might be to impose a slow pitch drift on an instrument persistently 
across individual notes. In the next example, the always-on instrument has a global variable gkpitch 
which slopes linearly from 1 to 0.9 during the length of the piece. The oscillator in the main 
instrument multiplies gkpitch with its pitch value.

gkpitch init 1

instr 17
ax oscili p4, p5 * gkpitch

out ax
endin

instr 98
gkpitch line 1, p3, 0.9

endin

; score
i98 0 60 ; assuming a one minute piece

i17 0 1 0.6 440
i17 1 1 0.7 330
; ... and a lot more i17 notes
e

This brings us to another point. Entering lots of notes and p-fields into score files is a tedious 
endeavour. On the other hand, the simple format of a score file makes it suitable for automated 
generation by algorithmic procedures. Any programming or scripting language can be put to 
service.

Utilities

Csound comes equipped with several utility programs, accessed from the command line:

csound -U [utility program name] [flags] [filenames]

The utilities include lpc analysis (linear predictive coding, typically used with vocal sounds), phase 
vocoder and other kinds of spectral representation and processing, and convolution. For 
documentation, see: https://csound.com/docs/manual/UtilitySoundfile.html

There are also utility programs for denoising (dnoise), mixing (mixer), extracting the amplitude 
envelope of a soundfile to a text file (envext), and others.

https://csound.com/docs/manual/UtilitySoundfile.html


Miscellaneous

Be aware that much more can be done with Csound than what is covered in this short guide, 
including realtime sound input and output, building custom GUIs, and communicating with MIDI 
devices. Newer versions allow declaring arrays of variables instead of just scalars. User defined 
opcodes can be created, and more inline functional syntax has been added in recent versions.

Further reading

Quick references:
https://csound.com/docs/manual/MiscQuickref.html
https://flossmanual.csound.com/introduction/preface

For anyone:
Boulanger, R. (2000). The Csound Book. The MIT Press.

For programmers:
Boulanger, R. and Lazzarini, V. (2011): The Audio Programming Book. The MIT Press.

https://flossmanual.csound.com/introduction/preface
https://csound.com/docs/manual/MiscQuickref.html


Essential opcodes reference

Variable and argument names begin with i, k, or a depending on which rate they apply to. Argument 
names beginning with an x may be i, k, or a-rate. This is a significantly abbreviated reference; many 
opcodes exist both in a-rate and k-rate versions, and some also as i-rate. Some optional arguments 
have been left out.

Orchestra header

sr = n ; sample rate
kr = n ; control rate
nchnls = n ; number of channels in output
0dbfs = x ; numerical value of highest representable amplitude value
instr n ; begin instrument definition
endin ; end instrument definition

Signal generators

asig oscili xamp, xfreq [, ifunction, iphase]
ksig oscili kamp, kfreq [, ifunction, iphase]
asig rand xamp ; can also output k-rate

ksig linen kamp, irise, idur, idecay ; max. amplitude, times in sec.
ksig line ia, idur, ib ; line segment from ia to ib over idur seconds
ksig expon ia, idur, ib ; exponential segment from ia to ib over idur

Filters, signal modifiers

asig tone ain, kcutoff ; one-pole lowpass
aisg atone ain, kcutoff ; one-pole highpass
asig butlp ain, kcutoff ; Butterworth lowpass
asig buthp ain, kcutoff ; Butterworth highpass
asig butbp ain, xfreq, xband ; bandpass, frequency and bandwidth
asig butbr ain, xfreq, xband ; band-reject

asig delay ain, idel ; delay ain by idel seconds
asig vdelay ain, kdel, imax ; delay ain by kdel (<imax) msec

ksig port kx, ihalf ; portamento of kx, ihalf in sec

Input and output

asig diskin infile, kspeed [, iskiptime [, iwrap]]
al, ar diskin infile, kspeed [ ...] ; a-variables on the left match 

; number of channels in infile

out asig ; mono output
outs aleft, aright ; stereo output

xvar init init_value ; for feedback variables
printk itime, ksig ; print ksig every itime seconds



Logic, control structures

if [condition] goto label ; i or k-rate condition
asig cmp ax, ”rel”, ay ; rel is one of <, <=, ==, >, >=
kz = (kx <rel> ky ? ka : kb) ; <rel> is one of <, <=, ==, >, >=

Mathematical operators and functions

xsig = [expression]
asig = ax^ipow ; raise ax to ipow, k-rate exponents also allowed
asig = ax <op> ay ; <op> is one of + - * / or %, all rates

asig = funct(x) ; funct is one of the following:
sqrt(x), sin(x), cos(x), 
tan(x), tanh(x), log(x) ; x may be any rate
int(x) ; integer part
frac(x) ; fractional part
abs(x) ; absolute value

kx = k(ax) ; rate conversion from a to k
ax = a(kx) ; rate conversion from k to a
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